气凝胶织出“北极熊毛衣”,穿上它轻薄超保暖!

发布时间:2023-12-22来源:学术委员会

化学工程与生物工程学院柏浩教授和高分子科学与工程学系高微微副教授学到了一种新策略他们模仿北极熊毛的-结构制备出一种封装了气凝胶的超保暖人造纤维不但有传统保温材料的隔热功能还能封锁人体向外辐射的红外线耐拉伸等力学性能也大大提升可直接机织能真正实现把气凝胶穿在身上,成果发表于《科学》。

完美保暖衣尚未出现

对于抗寒保暖这件事,北极熊是一本行走的“教科书”。一身超强保暖的“毛衣”,让他们能适应零下40℃的环境。北极熊的毛是中空结构,里面封装了大量“静止”的空气,通过抑制热传导和热对流减少热量的流失。保暖衣物的设计也是运用了这一原理。比如羊毛、羽绒都有抑制热传导和热对流的作用。

图:北极熊毛在光学显微镜下的照片

  为了追求在保暖的同时更加轻薄,人们自然想到要用更少的材料封装更多空气。孔隙率极高、密度比空气还小的气凝胶(空气占总体积90%以上)是一种理想选择。在过去的几十年中,人们试图将气凝胶“涂装”在织物的表面,或者直接“纺”出含有气凝胶的纤维。然而,由于气凝胶涂层容易脱落;或者材料的气凝胶含量有限,耐磨、抗拉伸等力学性能不佳等问题,下一代保暖衣物的性能似乎很难再有提升空间。

图:2018年做出的北极熊毛衣是用镊子编织的

2018年,柏浩课题组做出了第一代“北极熊毛衣”,引起了包括Nature杂志在内的学术期刊和工业界的广泛关注。轻薄的多孔纤维具有良好的隔热性能,然而其轴向抗拉伸性还不够理想,为了给做实验的小白兔裹上一层“北极熊毛衣”,研究生拿镊子小心翼翼才好不容易编出了一片“盖毯”。 “现有的几种方案不能同时解决保暖、轻薄和耐用的问题。”带着新的挑战,柏浩课题组又翻开了他们的“教科书”——北极熊毛。果然,他们注意到过去一个被忽略的细节:北极熊的毛不仅是中空的,而且还有一层壳!在电子显微镜下,这层壳大概有20微米厚,占了毛发直径的近四分之一。正是这个发现,启发了团队对于“北极熊毛2.0”的研制。先后有多名博士生、硕士生参与了这一项工作。  

左图为北极熊毛的微观结构;右图为仿生北极熊毛的微观结构

借鉴北极熊毛的 “核-壳”结构,历时近6年,团队做出了一种新型纤维:纤维的中心是高分子气凝胶,其内部分布着直径大约为10-30 微米的纤长的小孔,它们朝着同一个方向排列,像一个个存储空气的“仓库”;同时,一层TPU(热塑性聚氨酯弹性体)外壳将内部的气凝胶包裹起来。一核一壳,它们各有功用。

先来说“核”,它负责实现超强保暖。“保暖从一定程度上讲就是防止热量的流失。”论文第一作者,博士生吴明瑞介绍,人体散热的主要形式包括热辐射、热对流、热传导和汗液蒸发等,其中热辐射的影响最大(占比40-60%),热量以红外辐射的形式流失。然而,现有的保温衣物在调控热辐射方面贡献有限。一些传统的具有无序纳米孔结构的材料,由于孔径尺寸远远小于红外线的波长,它们对于红外线来说几乎是“透明”的,阻挡不了红外辐射。

图:仿生气凝胶纤维核层可以锁住大量静止空气,从而阻隔热传导、限制热对流。更重要的是,取向片层孔结构提供了大量的气-固界面,对人体发出的红外辐射进行多级反射,实现更加高效的保暖

研究团队认为,通过调控纤维内部小孔的方向与尺寸,有望“锁住”红外辐射。“红外线是从体表皮肤向外辐射,让小孔的取向与辐射方向垂直,同时调整尺寸,就有望匹配红外线的波长,从而达到锁住红外辐射的目的。”吴明瑞说。

图:各种衣物面料的保暖“挑战赛”

为了验证保暖效果,研究人员把学校食堂零下20摄氏度的恒温冷库变成了临时“试衣间”,在这里举办了一次“保暖挑战赛”。论文共同作者博士生张子倍同学担任模特,分别试穿初始温度相同的羽绒衣、羊毛毛衣、棉毛衫和“北极熊毛衣”,并记录衣物表面温度的上升情况。几分钟后,棉毛衫的表面上升到了10.8℃,羽绒衣的表面温度上升到了3.8℃。而厚度和羊毛毛衣接近,仅为羽绒衣三分之一到五分之一左右的“北极熊毛衣”表面仅上升到3.5℃——升温越少代表人体热量流失越少,“北极熊毛2.0”完胜了其他“对手”。“由于羽绒对于红外线的抑制效果差,所以要靠增加数倍的厚度才能达到同样的保暖效果。”吴明瑞说。

“新型气凝胶纤维能够对热辐射、热对流、热传导多管齐下,保暖性能因此前进了一大步。”高微微说。“目前所有的绝热材料都是靠封装尽量多的空气或者真空来抑制热传导和热对流。我们的纤维具有有序的孔结构,同时抑制了热辐射。这也是北极熊毛跟普通中空纤维的差别,也是我们从北极熊身上得到的重要启示。”


抗拉伸,耐水洗,可直接上纺织机  

再来说“壳”,它负责强韧耐用。“外壳就像骨架一样,为纤维提供了良好的力学支撑,使其耐磨、耐拉伸、耐水洗。”柏浩说,这是团队做出第一代仿生北极熊毛以来最为关注的挑战,“良好的综合性能是仿生纤维实现应用的关键。纤维织物相对于静态绝热(如保鲜盒)的要求更为苛刻,还需解决耐拉耐压,耐洗,减薄等一系列问题。”

图:仿生北极熊毛纤维拉伸测试

 团队为纤维设计了一种TPU外壳,一种常见的弹性材料。在实验中,新型纤维能被拉伸到自身长度的两倍而不断裂,很好地满足了衣物纤维的抗拉伸需求。经测试,从实验室连续宏量制备出来的仿生纤维,可以直接在商用纺织机上编织成面料。“当然壳并不是越强越好,”吴明瑞介绍,过厚的壳会影响纤维的保暖性能,因此,团队选取了一个最优值,兼顾了材料的保暖性能和力学性能。

北极熊毛让我们看到了大自然是如何通过‘解耦’设计来解决问题的。核与壳各司其职,缺一不可,共同成就了自然界最抗寒的材料之一。”柏浩说,“新型的可编织气凝胶纤维的设计,正是遵循这一思路。” 在后续实验中,团队还对仿生北极熊毛的其他应用能力进行了考验。比如防水,新型纤维是耐水洗的,洗了之后不会缩水,也不会影响其保暖性能。此外,还能轻松地对仿生北极熊毛进行着色。

图:新型纤维耐水洗,洗后不会缩水,保暖效果依旧。

审稿人在与团队讨论论文的措辞时,提议“不妨说人造北极熊毛‘超越’了天然北极熊毛”,柏浩认为,“超越”一词并不一定合适。“仿生的本质是向大自然学习如何解决问题,并不意味着我们已经完全理解了大自然。仿生是一个无止境的学习过程,即使是一根北极熊毛,里面肯定还有我们未知的智慧,所以说‘超越’还为时过早。当我们遇到新的问题,会促使我们继续向大自然学习,大自然也总能给我们以珍贵的启示。通过见人所常见,思人所未思,不断揭示大自然的秘密,发现新知识,创造改善人们生活的新材料是仿生研究的使命,也是我们多年来坚持的追求。”柏浩说。

论文链接:https://www.science.org/doi/10.1126/science.adj8013